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Abstract	

The	rational	or	irrational	property	of	real	numbers	is	an	arithmetic	property,	and	the	
rational	or	irrational	characteristics	of	some	important	constants	are	closely	related	to	
the	properties	of	integers	and	the	distribution	of	prime	numbers.	The	natural	exponent
eas	a	well‐known	irrational	number	has	attracted	close	attention	of	mathematicians.	We	
first	investigate	how	to	construct	suitable	auxiliary	functions	for	e 	such	that	the	proof	of	
its	irrational	properties	can	be	described	uniformly.	We	give	a	key	auxiliary	function	and	
construct	the	exponential	function	based	on	the	difference	of	the	properties	of	e 	itself,	
and	accordingly	we	obtain	some	 inferences	 that	 the	 irrational	properties	of	e	and	 its	
idempotent	forms	can	be	proved	uniformly.	
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1. Introduction	

The rational or irrational nature of real numbers is an arithmetic property, so it is not surprising 
to encounter important constants [1-6], whose rational or irrational nature is related to the 
nature of integers and the distribution of primes [7, 8], such as the number 
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2
6 (1 1 )

p
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
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Moreover, mathematics is an extremely rigorous science, and to assert that both numbers are 
irrational would require giving proof. 2  is the first irrational number ever discovered by man, 
and the method and procedure of its proof are relatively concise and clear. The proof that e  is 
irrational number is a bit more complicated. In this paper, we want to find out how to prove 
that e  is irrational number. 

2. Basic	Concepts	and	Preparatory	Knowledge	

This section describes the basic concepts, notations, and preparatory knowledge used 
throughout the work. 

2.1. Rational	and	Irrational	Criteria	
If a b  , where Z, ba  are integers, then the number R  is called rational. Otherwise, the 
number is irrational. Irrational numbers can be classified as algebraic and transcendental 
numbers.   is algebraic if it is a root of an irreducible polynomial  xxf Z)(   with number 

1)(deg ＞f  and vice versa [9]. 

Lemma 1 (Rational Criterion) If a real number Q  is a rational number, then there exists a 
constant ( )c c   such that 
 

c p

q q
                                                                            (1) 
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holds for any rational fraction p q  . Specifically, if B   then 1c B . 

This is a mathematical expression about the difficulty of any rational number Q  being 
effectively approximated by other rational numbers [10-12]. On the other hand, the irrational 
number QR   can be effectively approximated by rational numbers. If the inequality 

p q c q    complementary to Equation 1 holds approximately for an infinite number of 

rational numbers p q , then it is sufficiently clear that the real number R  is irrational. 

Lemma 2 (Irrational Criterion) Let ( )= (1 )x o x  be a monotonically decreasing function, such 
that Q  is a real number, if 
 

0 ( )
p

q
q

                                                                           (2) 

 

holds for infinitely many rational fractions Qqp , then   is irrational [10-12]. 

Proof: by Lemma 1 and assumptions, it follows that 
 

1
( )= ( )

c p
q o

q q q
                                                                     (3) 

 

However, this is a contradiction because (1 )c q o q . A more precise theorem for testing that 
any real number is irrational is discussed below. 
Theorem 1 Suppose aR is an irrational number, then there exists an infinite sequence of rational 
numbers n np q  satisfying 
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holds for any integer Nn  [10-12]. 

For a continuous fraction 1ia a   of the larger term  �,,, 210 aaa , where a  is a constant, 
there is a slightly better inequality. 

Theorem 2 Let 0 1 2[ , , ,...]a a a  be a sequence of continuous fractions  : 1n np q n   of real 
numbers that are convergent, then there is. 
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0 n
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q a q
                                                                            (5) 

 
holds for any integer Nn  [10-12]. 
This is a standard mathematical formulation in the literature [10-12], and related proofs appear 
in similar references [13-15]. A theorem that provides a more general application to almost all 
real inequalities is as follows. 
Theorem 3 Let   be a monotonically decreasing real function, R . If there exists an infinite 
sequence of rational approximations n np q  such that n np q   and. 
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                                                                    (6) 

 

and ( )
q
q    then the real numbers   are approximable to  . 

2.2. A	Key	Helper	Function	
Construct the auxiliary function. 

(1 )
( )

!

n nx x
f x

n


 , and prove that this function satisfies the following three properties. 

Property I ( )f x  is a polynomial of form 
2

!

n
ii

i n

c
x
i

  and satisfies that the coefficients ic  are all 

integers. 

Property II When 0 1x  , 
1

0 ( )
!

f x
n

  . 

Property III For all integers 0m  , the m -th order derivatives of ( )f x  must have integer values 
at 0 and 1, i.e., ( ) (0)mf  and ( ) (1)mf  are also integers. 

Property I and Property II are obviously valid, and Property III is proved below. ( )f x  is a sum 
of 1n  terms from the n th power of x  to the 2n th power of x , according to Property I. 
Therefore, when m n , ( ) (0)mf  is 0, which is of course an integer, and when 2m n , ( ) ( )mf x  is 

constantly 0, which is ( ) (0)mf , of course, also an integer. 

And when 2n m n  , the m th order derivative of ( )f x  according to the polynomial of 

property I yields ( ) !
(0)=

!
m mc m
f

n


, and since mc  is an integer and m n , this number must be an 

integer. Therefore ( ) (0)mf  must be an integer. Also, notice that this function has a very obvious 
symmetry, i.e. 
 

( )= (1 )f x f x                                                                             (7) 
 
Taking the derivative of order m  for both sides of this equation at the same time, and after that 
we get. 
 

( ) ( )( )=( 1) (1 )m m mf x f x                                                                   (8) 

 

from which we have ( ) ( )(0)=( 1) (1)m m mf f , so since ( ) (0)mf  is an integer, then ( ) (1)mf  is also an 
integer and Property III holds. 

3. Proof	of	Key	Conclusions	

3.1. Proof	That	E	Is	An	Irrational	Number	
We start with the simplest problem, proving that e  is irrational [16-18]. If the function xe  is 
subjected to a Taylor series expansion at the point 0x  , and then after substituting 1x   into 
the resulting infinite term series expansion, the following well-known formula is obtained, i.e. 
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Without resorting to Taylor series expansions, one can also use the following approach to give 
a less rigorous proof of the above equation from the definition of e . 

We know that by definition, 
1

lim(1 )n
n

e
n

  , and let us first look at the expression 
1

(1 )n
n

  for the 

limit being sought, expanding this power expression according to the binomial decomposition 
as follows. 
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We observe the i -th term of which (note that i  here is independent of n) and set the i -th term 
to ia , with 
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It is obvious that both sides of Equation 11 converge to 
1

!i
 as n  tends to  , so apply the pinch-

force theorem for the limit. 
 

1
lim

!ii
a

i
                                                                                (12) 

 

Since 
1

(1 )n
n

  expands to an n-term sum, when n  tends to  , it obviously becomes an infinite 

term sum. For n  tending to  , each obtained ia  corresponds to a specific, finite i . As a result 

of the above derivation, any specific ia  is equal to 
1

!i
 and the resulting infinite sum of terms 

must be, 
 
 

1 1
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e                                                                   (13) 

Thus. 
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After proving the above conclusion, the process, and method of proving that e  is an irrational 
number is simpler. We apply the converse method to prove that e  is indeed an irrational 
number. 

Assuming that e  is a rational number, we may set 
a

e
b

 , where a  and b  are positive integers, 

and we then take a positive integer n  and multiply both sides of this equation by !b n  to get. 
 

! !b n e a n                                                                                    (15) 
 
Obviously, the right side of equation 15 is an integer, while its left side is. 
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     (16) 

 
 
The first term of this equation is clearly an integer, yet the second term is clearly faulty so that 
the second term is equal to M . We have. 
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                                    (17) 

 
Since it is n we arbitrarily choose a positive integer, as long as we get the value of n  large 
enough so that n b , we get 0 1M  , thus making it impossible for M  to be an integer. Thus 
the left side of equation 15 is not an integer, while its right side must be an integer, a 
contradiction. 
Thus e  cannot be a rational number, and the proof is over. 

3.2. Proof	That	 ke 	( k 	Is	A	Positive	Integer)	Is	Irrational	
If we are familiar with the Taylor series expansion of xe , we can use the previous method to 
prove that e  is irrational in a similar way to prove that 2e  is also irrational. First assume that 
2 a
e

b
 , and then get 1b e a e   , while using the Taylor series expansion of e  and 1e , and find 

that one of the two sides of the equation is a little larger than some integer and the other side 
is a little smaller than some integer, in which case the two numbers cannot be equal, thus 
deriving a contradiction. No further details will be elaborated here [19-22]. 
Also, thinking a bit more, we can see that studying whether ke  is an irrational number is a 
relatively meaningful problem. If for any positive integer k , there is for irrational ke , so that 
any rational power we obtain is easily irrational, this is because: for any positive rational 

number 
k

l
, both k  and l  are obviously positive integers and =( )k k l le e , but if ke  is irrational, 

k le  must also be irrational, because an integer power of a rational number must be rational, 
not irrational. 
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As for the negative rational powers of e , it must be the reciprocal of the positive rational 
powers, because once all the positive rational powers of e  are irrational, it is equivalent to 
proving that its negative rational powers are also irrational. 
We assume that there exists some positive integer k . To make ke  a rational number, we can set 
k a
e

b
 , and a  and b  are positive integers. Then we use the auxiliary function ( )f x  from 

Section 2.2 to construct a new function satisfying ( )F x . 
 

2 2 1 (1) 2 2 (2) 2 ( ) (2 )( ) ( ) ( ) ( ) ...... ( 1) ( ) ...... ( ) ......n n n i n i i nF x k f x k f x k f x k f x f x               (18) 

 

Since ( )f x  is a sub-polynomial, the function ( )F x  is 0 for all terms after the term (2 ) ( )nf x , but 
it does not make a fundamental difference to continue adding up and writing it in the form of 
an infinite sum of terms. The function ( )F x  so constructed has a feature that the form of the 
derivative function is somewhat similar to the original function, so it is easy to calculate to 
obtain. 
 

2 1'( ) ( ) ( )nF x kF x k f x                                                              (19) 

 
Based on equation 19 the differential equation can be constructed as follows. 
 

2 1d
[ ( )] '( ) ( ) ( )

d
kx kx kx kx ne F x e F x e k F x e k f x

x
                      (20) 

 
Thus, we obtain the following integral equation. 
 

1 2 1 1
00

( )d ( ) = (1) (0) (1) (0)kx n kx kL b e k f x x b e F x b e F b F a F b F                       (21) 

 
 
According to Property III, (1)F  and (0)F  are integers, and a  and b  are also integers, thus L  
should be an integer. But on the other hand, according to property II, we have. 
 

2 1
1 2 1 2 1

0

1
0 ( )d =

! !

n
kx n k n a k

L b e k f x x b e k
n n


  

                                             (22) 

 
At large values of n , !n  grows much faster than 2 1nk  , so it is necessary to choose n  large 
enough so that 2 1! nn a k    and then get 0 1L  , which contradicts that L  is an integer. Thus 
ke  cannot be a rational number and the proof is over. 

From the above process, we get the following conclusion: the natural exponent e  itself is 
irrational, while any rational power of e  (except 0) is also irrational. 
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