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Abstract	
This	paper	discusses	a	target	location	problem	by	using	hybrid	measurements	of	time‐
of‐arrival	 (TOA)	 and	 angle	 of	 arrival	 (AOA)	 in	 a	 three‐dimensional	wireless	 sensor	
network	(WSN).	A	novel	non‐convex	estimator	based	on	the	least	squares	(LS)	criterion	
is	proposed.	This	estimator	is	transformed	into	a	generalized	trust	region	subproblem	
(GTRS)	framework	which	tightly	approximates	the	maximum	likelihood	(ML),	therefore	
the	optimal	solution	can	be	obtained	by	using	the	simple	bisection	method.	Furthermore,	
a	 second‐order	cone	 relaxation	method	 is	also	proposed	 to	approximate	 the	original	
non‐convex	problem	into	a	convex	optimization	problem,	and	a	suboptimal	solution	can	
be	easily	obtained.	Finally,	Cramer‐Rao	lower	bound	of	the	estimator	based	on	hybrid	
measurements	 of	 time‐of‐arrival	 (TOA)	 and	 angle	 of	 arrival	 (AOA)	 in	 a	 three‐
dimensional	wireless	sensor	network	is	also	derived.	Theoretical	analysis	and	computer	
simulation	results	show	that	the	proposed	two	methods	provide	good	performance.	
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1. Introduction	

Wireless	 Sensor	 Networks	 (WSN)	 generally	 refers	 to	 a	 Wireless	 communication	 network	
composed	of	multiple	Sensor	devices,	which	are	assigned	to	a	monitored	area	to	measure	some	
locally	interesting	information	[1],	[2].	In	recent	years,	wireless	sensor	network	(WSNS)	have	
been	 used	 in	 a	 wide	 range	 of	 application,	 such	 as	 target	 tracking,	 navigation,	 emergency	
services,	 friends	finding	and,	 intelligent	 transportation	[3],	 [4].	 In	 these	applications,	getting	
positioning	of	the	target	position	is	crucial.	GPS	and	other	satellite	systems	can	provide	high‐
precision	 location	 information	 for	outdoor	 targets.	However,	 in	 some	special	 environments,	
satellite	 positioning	 system	 cannot	 provide	 target	 location	 information.	 Therefore	 target	
localization	methods	based	on	Wireless	Sensor	Networks	(WSN)attract	more	attention	[5].	In	
these	methods,	sensor	nodes	with	known	location	are	called	anchor	nodes,	and	those	that	need	
to	be	located	by	anchor	nodes	are	called	target	nodes.	The	main	idea	of	sensor	location	is	to	
determine	the	location	of	the	target	node	by	using	the	measurement	data.	Depending	on	the	
way	the	observed	data	are	obtained,	the	target	location	methods	can	be	divided	into:	time	of	
arrival	(TOA)	[6],	[7],	Angle	of	arrival	(AOA)	[8],	[9],	time	of	arrival	(TDOA)	[10],	[11],	received	
signal	strength	(RSS)	[12],	[13],	and	combinations	of	them	[19].	
Target	 localization	 estimators	 based	 on	 a	 single	 kind	 of	 measurement	 have	 two	 main	
advantages	due	to	their	low	complexity	and	cost	[15],	however,	there	exists	great	room	for	the	
estimation	 accuracy	 improvement,	 hybrid	 processing	 from	 the	 combined	 measurement	
systems	has	been	proposed	to	improve	the	performance.	
In	[16],	a	target	node	localization	problem	based	on	TOA	measurements	was	addressed	by	LS	
techniques.	 This	 method	 can	 reduce	 the	 computational	 complexity,	 however	 the	 methods	
mentioned	above	provide	 low	estimation	 accuracy.	To	 reduce	 the	 localization	 error,	 hybrid	
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systems	that	use	RSS	and	AOA	measurements	were	presented	in	[14],	However,	the	localization	
precision	is	sensitive	to	the	channel	environment	and	the	model	can	be	very	difficult	to	be	built	
in	some	cases.	In	[15],	the	authors	propose	a	unified	solution	with	a	single	model	to	locate	the	
source	using	AOA,	without	requiring	the	knowledge	whether	the	source	is	close	to	or	far	from	
the	 anchor	 nodes	 and	 then	 extend	 the	 analysis	 and	 the	 algorithm	 for	 hybrid	 AOA‐TDOA	
localization.	 In	[16],	the	 least	squares	TOA	and	AOA	localization	algorithms	based	on	Taylor	
series	 expansion	 are	proposed	 in	 the	 two‐dimensional	 space.	This	method	 employs	Taylor‐
series	 expansion	 to	 make	 it	 linear,	 while	 the	 performance	 of	 this	 approach	 relies	 on	 the	
accuracy	of	the	initial	guess	and	its	iterative	process’s	convergence	is	not	proved.	In	[17],	the	
author	proposes	a	TOA	and	AOA	localization	algorithm	based	on	weighted	linear	least	squares	
in	two‐dimensional	space,	and	derives	the	Kramer	lower	bound	of	the	algorithm,	but	it	is	not	
considered	in	three‐dimensional	space.	In	[18],	the	authors	proposed	two	methods	based	on	
linear	least	squares	(LS)	and	optimization	are	studied	by	making	use	of	combined	TOA	and	AOA	
measurements	 in	 three‐dimensional	 space.	The	LS	 estimator	 is	 a	 relatively	 simple	 and	well	
known	estimator,	while	 the	optimization	based	estimator	was	solved	by	Davidson‐Fletcher‐
Powell	 Algorithm.	 Although	 these	 two	 estimation	 methods	 are	 easy	 to	 implement,	 their	
estimation	accuracy	can	be	further	improved.	
In	the	author	proposes	a	TOA	and	AOA	localization	algorithm	based	on	weighted	linear	least	
squares	in	two‐dimensional	space,	and	derives	the	Kramer	lower	bound	of	the	algorithm,	but	it	
is	not	considered	in	three‐dimensional	space.	In	the	authors	proposed	two	methods	based	on	
linear	least	squares	(LS)	and	optimization	are	studied	by	making	use	of	combined	TOA	and	AOA	
measurements	 in	 three‐dimensional	 space.	The	LS	 estimator	 is	 a	 relatively	 simple	 and	well	
known	estimator,	while	 the	optimization	based	estimator	was	solved	by	Davidson‐Fletcher‐
Powell	 Algorithm.	 Although	 these	 two	 estimation	 methods	 are	 easy	 to	 implement,	 their	
estimation	accuracy	can	be	further	improved.	
In	 this	 work,	 we	 propose	 a	 novel	 localization	 method	 in	 3D	 WSNs	 by	 utilizing	 combined	
measurements	of	TOA	and	AOA.	A	new	objective	 function	 for	solving	the	hybrid	positioning	
problem	is	established	by	using	the	weighted	least	squares	criterion.	Secondly,	the	generalized	
GTRS	 framework	 is	 used	 to	 transform	 the	original	 non‐convex	optimization	problem	 into	 a	
generalized	trust	domain	sub‐problem,	which	can	be	solved	accurately	by	a	simple	bisection	
procedure.	 The	 operation	 complexity	 is	 low	 and	 the	 positioning	 performance	 is	 better.	 In	
addition,	we	show	that	the	derived	non‐convex	objective	function	can	be	transformed	into	a	
convex	one,	by	using	second	order	cone	relaxation	method.	The	simulation	results	show	that	
the	estimated	performance	of	the	proposed	algorithm	is	significantly	improved.	
The	following	notations	are	adopted	throughout	the	paper.	Bold	face	lower	case	letters	and	bold	
face	upper	case	letters	denote	the	vectors	and	matrices,	respectively.	 nR denotes	the	set	of	n‐
dimensional	 real	 column	 vectors. ir denotes	 the	 i‐th	 entry	 of	 the	 vector	 r .	 In	 addition,	 ||
denotes	the	 2l 	norm.	

The	rest	of	the	paper	is	organized	as	follows.	Section	II	discusses	the	TOA	and	AOA	models,	and	
also	proposes	the	localization	problem.	Section	III	presents	the	proposed	localization	methods.	
In	 Section	 IV,	 the	 complexity	 of	 the	 algorithm	 is	 analyzed.	 Section	 V	 derived	 CRLB	 of	 the	
algorithm	 analysis	 ,	 Section	 VI	 provides	 computer	 simulation	 results	 and	 analyzes	 the	
performances	of	the	proposed	methods.	Finally,	the	main	conclusions	are	concluded	in	Section	
VII.	
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2. System	Model	and	Problem	Formulation	

2.1. A.	System	Model	
In	this	section,	we	consider	a	three‐dimensional	WSNs	with	N 	anchor	nodes	and	one	target	
node,	where	the	location	of	the	anchor	nodes,	noted	as	 1 2, , , Ns s s ,	are	known,	but	the	location	
of	the	target	node,	noted	as	 x ,is	unknown.	For	simplicity	and	without	 loss	of	generality,	we	
assume	that	the	anchor	nodes	are	equipped	with	omnidirectional	antennas.	Under	a	centralized	
processing	mode,	all	sensors	convey	to	the	central	processor	their	TOA	and	AOA	measurements	
with	respect	to	the	target	node	for	the	 location,	during	which	the	 locations	of	all	 the	sensor	
nodes	are	supposed	 to	be	unchanged.	As	 show	 in	Fig.1,	  1 2 3, ,x x x x 	and	  1 2 3, ,i i i is s s s are	

respectively	the	unknown	coordinates	of	the	target	and	the	known	coordinates	of	the thi 	anchor	

node.	 id 	, i 	, i 	respectively	represent	the	distance,	azimuth	angle	and	elevation	angle	between	

the	target	and	the	 thi 	anchor.	Assuming	that	the	target	node	sends	a	signal	to	the	anchor	node,	
then	the	anchor	node	can	extract	the	 information	of	TOA	and	AOA	from	the	received	signal.	
Knowledge,	 the	application	of	simple	geometric	structure	TOA	measurement	 information	 id 	

and	AOA	measurements	(azimuth	angle	 i 	and	elevation	angle	 i )	can	be	modeled	as	[20],	[21].	

	
Fig	1.	Illustration	of	the	link	between	the	target	node	and	the	 thi 	and	anchor	node	in	3D	WSNs	
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Where || ||ix s 	is	the	true	distance	between	the	i‐th	anchor	node	and	the	target	node,	and in 	

follows	a	Zero‐mean	Gaussian	distribution	 i.e.,	 2(0, )i nn N  ,	where	 im and	 iv 	represent	 the	
errors	of	azimuth	and	elevation	respectively,	modeled	as	zero	mean	Gaussian	random	variables,	
i.e.,	 2(0, )i mm N  ,	and	i.e.,	 2(0, )i vv N  ,	For	the	sake	of	simplicity,	in	the	rest	of	this	paper,	we	

assume	the	following	variances	of	all	noise	 2 2

in n  ; 2 2

im m  ; 2 2

iv v  ,	for	 1, ,i N  .	
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2.2. B.	Problem	Formulation	

Given	 the	 observation	 vector	  , ,
TT T Td   , 3NR  ,	 where	  1 2, , ,

T

Nd d d d  ,	

 1 2, , ,
T

N     ,	  1 2, , ,
T

N     .	the	resulting	joint	Maximum	Likelihood	(ML)	estimation	

of	target	location	 x 	can	be	formulated	as:	
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Although	the	ML	estimator	is	approximately	the	minimum	variance	unbiased	estimator,	the	ML	
estimator	is	non‐convex	and	no	closed‐from	solution.	In	order	to	overcome	the	non‐convexity	
and	nonlinearity	of	ML	estimation,	it	is	proved	that	the	maximum	likelihood	problem	(4)	can	
be	 solved	 by	 the	 suboptimal	 estimation	 method.	 In	 the	 following	 paper,	 we	 proposed	 a	
suboptimal	estimator	based	on	GTRS	approach,	which	can	be	solve	exactly	by	a	simple	bisection	
procedure	and	a	convex	optimization	method	which	can	be	solved	efficiently	by	interior‐point	
algorithms.	

3. Proposed	Techniques	

In	the	section,	we	develop	two	estimators	by	using	appropriate	relaxation	techniques,	namely	
GTRS	and	SOCP	for	3‐D	target	positioning.	

Move	the	measurement	noise in 	in	equation	(1)	to	the	left	side	of	the	equation	and	square	the	
equations.	By	ignoring	the	noise	quadratic	term,	we	can	get	the	approximate	formula	(5):	
	

22i i i id d n x s    																																																																					(5)	
With	simple	manipulations,	we	have	
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Similarly,	for	the	sufficiently	small	noise,	(2)	and	(3)	can	be	rewritten	in	approximation	from	
(7)	and	(8)	below,	respectively.	
	

   1 1 2 2sin cos 0i i i ix s x s      																																																													(7)	

	

     1 1 2 2 3 3cos sin sin sin cos 0i i i i i i i ix s x s x s           																															(8)	

	
For	the	sake	of	expression,	(7)	and	(8)	can	be	written	as	vector	from:	
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Where	  sin ,cos ,0
i

T

i ig    	and	  cos sin , sin cos ,cos
i

T

i i i i ig        .	

3.1. A.	Proposed	GTRS	Method	
In	this	part,	designs	a	fast	target	location	algorithm	for	solving	problem	(4).	The	specific	process	
is	as	follows:	in	order	to	given	more	importance	to	nearby	links,	we	introduce	weights	similarly	
to	[22]:	
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Where	 || ||i i id x s n   	is	 the	measurement	 of	 the	 distance	between	 anchor	node	 and	 target	
node.	
Then,	base	on	the	weighted	least	square	(WLS)	criterion	and	(6),	(9),	(10),	we	can	derive:	
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Although	the	problem	(12)	is	no	convex	and	has	no	closed	from	solution.	In	the	following	part,	
we	can	transform	(12)	 into	an	equivalent	quadratic	programming	problem	with	a	quadratic	
constraint	whose	global	solution	can	be	computed	efficiently.	

Using	the	substitution	 2|| ||
TTy x x    ,We	can	rewrite	(12)	as	a	GTRS:	
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Although	problem	(12)	is	still	non‐convex,	both	the	objective	function	and	the	constraint	in	(12)	
are	quadratic.	This	is	a	typical	quadratic	programming	problem	with	quadratic	constraint,	and	
can	be	solved	by	using	the	bisection	method	[23].	

3.2. B.	Proposed	SOCP	Method	
In	 this	 section,	 we	 proposed	 an	 effective	 target	 localization	 algorithm	 based	 on	 convex	
optimization.	The	specific	process	is	as	follows:	By	squaring	both	sides	of	the	equation	(1),	and	
ignoring	the	quadratic	term	of	noise	that:	
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Then,	base	on	the	weighted	least	square	(WLS)	criterion	and	(13),	(9),	(10),	we	can	derive:	
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The	problem	in	(14)	is	highly	non‐convex	and	has	no	closed	from	solution,	it	can	be	transformed	
into	a	convex	problem	by	using	some	technique.	In	this	section,	we	introduce	auxiliary	variable
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the	following	optimization	problem.	
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For	the	sake	of	relaxation,	we	also	introduce	the	slack	variable	 ir , iz , ih ,	can	be	relaxed	as:	
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The	minimization	problem	(16)	is	still	non‐convex	and	has	no	closed	form	solution.	However,	
by	relaxing	 || ||i ir x s  , 2|| ||y x , || ||i ix s r  , 2|| ||x y ,	respectively,	we	can	obtain	the	following	
convex	SOCP	estimator,	which	can	be	expressed	as:	
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The	Problem	in	(17)	is	a	SOCP	problem,	which	can	be	efficiently	solved	by	the	CVX	package	for	
specifying	and	solving	convex	programs.	

4. Complexity	Analysis	

The	 computational	 complexity	 of	 the	 discussed	 methods	 is	 analyzed	 in	 this	 section.	 The	
estimator	 for	 the	worst‐case	 complexity	 of	 the	mixed	 SD/SOCP	 [25]	 is	 used	 to	 analyse	 the	
complexities	 of	 our	proposed	 estimator	 and	other	 considered	 estimators	 in	 this	 paper.	The	
formula	of	computing	complexities	is	given	here	
	

3 2 22 2 3

1 1 1 1

sd sd soc socN N N N
sd sd soc soc
i i i i

i i i i

O L m n m n m n n m
   

  
     

  
    																																		(18)	

	
Where	 L is	the	number	of	iterations	of	the	algorithm,	m is	the	number	of	equality	constrains,

sdN , socN 	are	respectively	the	number	of	the		semidefinite	cone	(SDC)	and	second	order	(SOC)	

constrains,	and sd
in , soc

in are	the	number	of	dimensions	of	 the	 thi 	SDC	and	 thi 	SOC,	respectively.	

Assuming	that	 maxK 	is	the	maximum	number	of	steps	in	the	bisection	procedure	used	in	[18].	
The	 formula	 (17)	 and	 Table	 I	 shows	 that	 the	 computational	 complexity	 of	 the	 discussed	
methods	depends	mainly	on	the	network	size,	i.e.,	the	number	of	anchors.	
	

Table	1.	Summary	of	the	Considered	Methods	
Method	 Description	 Complexity	

LS	 The	LS	approach	in	[18]	  O N 	

GTRS	
The	proposed	GTRS	method	

based	on	LS	in(12)	
 max2 O K N 	

SOCP	
The	proposed	SOCP	relaxation	

method	in	(17)	
 3.5O N 	

CRLB	
Lower	limit	on	the	variance	
of	any	unbiased	estimators	

 O N 	

	
As	can	be	seen	 from	Table	1,	 the	proposed	SOCP	method	 is	 the	most	expensive	 in	 terms	of	
computational	cost,	as	expected.	In	addition,	we	can	see	that	the	proposed	GTRS	method	has	
higher	computational	requirements	than	the	current	method.	This	is	because	the	GTRS	method	
is	 iteratively	executed.	However,	 it	can	be	seen	from	the	simulation	analysis	 that	 the	higher	
computational	 cost	 of	 the	 proposed	 method	 is	 very	 reasonable	 because	 of	 their	 superior	
performance	in	terms	of	estimation	accuracy.	

5. Cramer‐Rao	Lower	Bound	Analysis	

In	this	section	,We	would	like	to	drive	the	CRLB	of	the	parameter	vector , ,T T Td      ,when	

the	TOA	measurement	noise	 n 		 and	AOA	measurement	noise	vectorsm ,	 v 	are	 independent.	
The	measurement	noise	vectors	 n ,	m ,	 v 	are	all	Gaussian	and	 they	are	 independent	of	 each	
other.	The	conditional	probability	density	function(pdf)	is	given	as:	
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    23

22
1

1
| exp

22

N
i i

i ii

f x
p x






    
  

 																																																	(19)	

	

For	 the	 target	 location	 ix ,	 the	 ML	 estimator	 ix

	in	 the	 (2)	 is	 an	 unbiased	 estimator,	 i.e.,	

i iE x x   
 


,,as	the	are	essentially	based	on	(1)	Then,	the	covariance	matrix	of	 ix


	is	subject	to	

the	CRLB	as	 1
iVAR x F    

 


.whereF 	is	 the	Fisher	 information	matrix	(FIM).	Accordingly,	we	

are	defined	 the	CRLB	on	RMSE	by	computing	 the	root	 trace	of	 1F  .As	proved	 following,	 the	
CRLB	can	be	defined	as	
	

   1CRLB x tr F  																																																																					(20)	

The	FIM	are	computed	as	:	
	

1

T TT T T T T T

i i i i i id d
F Q

x x x x x x

   
                                                        

																									(21)	

	
Where	

 

     

2 1

1 3 2 3

31 2

2 2 2

2 1

2 2 2 2

1 3 2 3

3 2 3 2

31 2

, ,

[ 0]
cos cos

cos
[ ]

cos cos

i i in m v

i ii

i i i i

i i i ii i

i i i i i

ii ii

i i i

diag

x s x s

x r r

x s x s x s x s

x r r r

x sx s x sd

x r r r

  



 
 

 
 

  

   
  


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    

																						(22)	

i ir x s  is	the	distance	from	the	source	to	the	 thi 	senor.	

6. Simulation	Results	

In	 this	 part,	 computer	 simulation	 results	 are	 used	 to	 compared	 the	 performance	 of	 the	
proposed	methods	with	the	LS	methods	[18].	The	proposed	algorithm	was	solved	by	using	the	
MATLAB	package	CVX,	where	the	solver	is	SeDuMi[24].	We	are	use	the	propagation	model	(1),	
(2),	 (3)	 to	 generate	 the	 rang	 and	 angle	measurement.	 The	 anchors	 are	 assumed	 uniformly	
located	at	a	circle	with	radius	20m,	while	the	unknown	target	node	is	uniformly	and	randomly	
chosen	from	a	region	of	size 220 20m in	each	Monte	carlo	(Mc)	runs.	As	the	performance	metric	
we	used	the	root	mean	error	(RMSE),	defined	as:	
	

2

1

1
ˆ|| ||

cM

i i
ic

RMSE x x
M 

= 																																																										(23)	
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where	 ˆix 	is	the	estimated	location	of	the	 thi 	Monte	carlo	runs.	

	
Fig	2.	RMSE	versus	the	σ	when	the	number	of	anchor N is	fixed	and	 8N  	

	
Figure	2	compares	the	RMSE	versus	the	noise	standard	deviation	for	different	methods,	when	

6N  .	From	Fig.2,	 It	 is	observed	 that	 the	RMSE	grows	 in	nature	as	 the	standard	derivation	
increases	 for	 all	 the	 methods.	 Moreover,	 it	 is	 seen	 that	 the	 performance	 gap	 between	
approaches	increase	with	noise	standard	deviation.	It	also	shows	that	the	proposed	methods	is	
outperform	 the	 other	methods	 for	 different	 noise	 stand	 deviation,	 reducing	 the	 estimation	
error	 for	 roughly	 4m	 (SOCP)	 and	 3m(GTRS),	 for 6( ,deg)m = .	 It	 is	 clear	 that	 our	 proposed	
"SOCP"	estimator	outperforms	of	the	existing	estimators	and	is	the	closest	to	CRLB	among	the	
discussed	estimators.	This	 result	 shows	 that	 the	proposed	estimator	 is	 the	 closest	RMSE	 to	
CRLB.	
	

	
Fig	3.	Effect	of	RESE	versus	of	sensor	number	 N when	 4dB  	

	
Fig.3	compares	the	RMSE	versus	the	number	N	of	the	anchor	nodes,	when	 6( ,deg)m = .	The	
figure	shows	that	the	RMSE	of	all	the	discussed	methods	decreases	when	the	number	of	anchor	
nodes	increases.	It	is	clear	that	the	new	approaches	outperform	considerably	the	existing	one	
for	all	choices	of	N.	Moreover,	the	RMSE	of	the	proposed	algorithm	has	a	slow	decline	with	the	
increase	of	the	number	of	anchor	nodes,	indicating	that	the	proposed	method	is	more	robust.	
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This	result	shows	that	the	proposed	estimator	is	the	closest	RMSE	to	CRLB,	and	the	proposed	
method	has	better	positioning	performance	better	than	the	other	discussed	estimator.	
In	summary,	simulation	and	theoretical	results	verify	that	the	proposed	estimator	provide	the	
best	performance	versus	the	noise	standard	deviation	and	the	number	of	anchor	respectively.	

7. Conclusion	

In	this	paper,	we	 investigated	a	hybrid	 localization	system	which	combines	range	and	angle	
measurements	 for	 target	node	 localization	 in	3‐D	space.	 In	order	 to	avoid	 the	ML	estimator	
convergence	problem,	we	derive	a	novel	non‐convex	estimator	based	on	the	least	squares	(LS)	
criterion,	and	we	derived	two	estimators	that	tightly	approximate	the	ML	estimator	for	small	
noise,	 namely	 SOCP	 and	 GTRS.	 This	 method	 effectively	 reduces	 the	 positioning	 error	 and	
improves	the	accuracy	of	the	positioning.	Simulation	results	show	that	the	proposed	methods	
outperform	other	discussed	methods	in	estimation	accuracy	in	various	system	settings.	
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